

Application Program Interface Guide for Python

Document Version: 2017-06-15

Copyright © 2017 Network Development Group, Inc.
www.netdevgroup.com

NETLAB Academy Edition, NETLAB Professional Edition, and NETLAB+ are registered trademarks of Network Development Group, Inc.

VMware is a registered trademark of VMware, Inc. Cisco, IOS, Cisco IOS, Networking Academy, CCNA, and CCNP are registered
trademarks of Cisco Systems, Inc. EMC2 is a registered trademark of EMC Corporation.

Application Program Interface (API) calls are supported in NETLAB+ VE
version 17.1.6 and later.

This guide is to be used along with the NETLAB+ VE Python for SDK
documentation. The NETLAB+ API methods described in this guide can
be referenced in the SDK documentation, which provides greater detail.
To access, visit the following link: https://ndg.tech/netlab-py-docs

https://ndg.tech/netlab-py-docs

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 1

Contents
Introduction .. 3
1 Prerequisites ... 4

1.1 Pre-installation Configuration .. 4
2 Installing and Preparing Python on Windows .. 5

2.1 Installing Python ... 5
2.2 Verifying Python System Path Variable (Best Practice – Optional) 8
2.3 Installing & Configuring a Virtual Environment (Best Practice - Optional) 11
2.4 Installing iPython (Recommended - Optional) ... 14

3 Installing and Configuring the NETLAB+ Client API ... 15
3.1 Installing the NETLAB+ Client API Packages ... 15
3.2 Activate the API in NETLAB+ VE ... 16
3.3 Creating an API Key in NETLAB+ VE .. 17
3.4 Creating config.json for the Client API Using Windows 18

3.4.1 Automated CLI Procedure (Option 1) ... 18
3.4.1.1 Useful netlab CLI Commands ... 22

3.4.2 Manual UI Procedure (Option 2) .. 23
4 Issuing API Calls ... 26

4.1 Using the API to Connect to a NETLAB+ System .. 26
4.2 Informative NETLAB+ API Methods ... 27

4.2.1 Infrastructure API Methods .. 28
4.2.2 NETLAB+ API Methods .. 32

4.2.2.1 VM Inventory ... 32
4.2.2.2 Pod Inventory .. 34
4.2.2.3 User & Class Inventory .. 36

4.3 NETLAB+ API Methods using Sample Scripts ... 39
4.3.1 Downloading the Sample Scripts .. 40
4.3.2 Creating Empty Master Pods .. 41

4.3.2.1 Script Prep ... 41
4.3.2.2 Initiate .. 42

4.3.3 Bring Pods Online .. 43
4.3.3.1 Script Prep ... 43
4.3.3.2 Initiate .. 44

4.3.4 Bring Pods Offline ... 45
4.3.4.1 Script Prep ... 45
4.3.4.2 Initiate .. 47

4.3.5 Remove Pods... 48
4.3.5.1 Script Prep ... 48
4.3.5.2 Initiate .. 50

4.3.6 Cloning Pods .. 51
4.3.6.1 Script Prep ... 51
4.3.6.2 Initiate .. 53

4.3.7 Adding Users ... 54
4.3.7.1 Script Prep ... 54
4.3.7.2 Initiate .. 55

4.3.8 Removing Users .. 57
4.3.8.1 Script Prep ... 57

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 2

4.3.8.2 Initiate .. 58
4.3.9 Creating Classes .. 59

4.3.9.1 Script Prep ... 59
4.3.9.2 Initiate .. 60

4.3.10 Removing Classes .. 61
4.3.10.1 Script Prep ... 61
4.3.10.2 Initiate .. 62

Appendix A .. 63
Appendix A.1 Quick Start Guide for Cloning Pods ... 63

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 3

Introduction

This is the NETLAB+ Application Program Interface Guide for Python for the virtual
edition of NETLAB+.

NETLAB+ is a remote access solution that allows academic institutions to deliver a
hands-on IT training experience with a wide variety of curriculum content options.
The training environment that NETLAB+ provides enables learners to schedule and
complete lab exercises for information technology courses. NETLAB+ is a versatile
solution for facilitating IT training in a variety of disciplines including networking,
virtualization, storage and cyber security.

NETLAB+ VE features the ability to communicate with the system through Application
Program Interface (API) calls, allowing customers to create custom automation scripts
for many of NETLAB+'s administrative functions, such as automatically adding accounts
from a Learning Management System (LMS). This guide provides details on the
installation and configuration steps required in order to issue API calls using Python.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 4

1 Prerequisites

This section will help outline what is required before installing/configuring Python and
issuing API calls.

1.1 Pre-installation Configuration

Mechanisms that need to be in place:

• NETLAB+ VE: The NETLAB+ needs to be deployed and licensed.
• Network: A network needs to be in place where the administrative machine

is able to communicate with the NETLAB+ system.
• TCP 9000: Going from outside to inside, this port needs to be opened on the

NETLAB+ VE system as it provides access for the administrative machine to
issue API calls to the NETLAB+.

For more information regarding connectivity requirements for a
NETLAB+ VE system, please see the Firewall Requirements section
of the NETLAB+ VE Designated Operating Environment Guide.

TCP 9000 is only required for administrators that are connecting
remotely to their NETLAB+ VE system and not locally on the same
network.

http://www.netdevgroup.com/
https://www.netdevgroup.com/support/documentation/netlabve/netlabve_designated_operating_environment_guide.pdf

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 5

2 Installing and Preparing Python on Windows

This section outlines the steps necessary to install Python on a Windows client.
Additional guidance will also be provided on how to install crucial third-party Python
software along with the implementation of virtual environments to keep dependencies
for separate projects in isolated environments.

2.1 Installing Python

The Python installer is required to install the Python software. This subsection will
describe how to download the Python installer from the Python Software Foundation.

1. Using a web browser, preferably on an administrative machine, navigate to
http://www.python.org/downloads. This will bring you to the Downloads page
supported by Python Foundation.

2. While on the Downloads page, locate Python by its release number and click on
its name to navigate to the available downloads section of the Python installer
for Windows.

3. When on the new page, scroll down towards the Files section. Select either the
32-bit or 64-bit installer for Windows, dependent on your local host system.

4. Once the download completes, navigate to the download directory and open the
python-x.x.x.exe file.

5. Using the Python Setup wizard, check the box for Add Python to PATH and
proceed with the installation by selecting Customize installation.

At this time, the NETLAB+ API is only compatible with the
following versions of Python: 3.4, 3.5, and 3.6.

http://www.netdevgroup.com/
http://www.python.org/downloads

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 6

6. In the Optional Features screen, ensure all checkboxes are checked and click
Next.

7. On the Advanced Options screen, change the Customize install location
directory to the following: C:\Python35\

Depending on the version installed, modify the install location
appropriately (i.e. Python 3.4 will result in C:\Python34\.

Notice that pip will be installed as an optional feature. Pip is a
package management tool for Python. This feature allows the
installation of additional Python packages through the Python
Package Index.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 7

8. Click Install.

9. Once the installation process successfully finishes, click Close.

If presented with the User Account Control window, select Yes to
continue.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 8

2.2 Verifying Python System Path Variable (Best Practice – Optional)

This subsection helps outline the process of verifying and configuring the system path
variables for Python. This will provide the operating system a search path that lists the
directories for the OS to search for executables.

1. Open the Start Menu and type environment in the search field. Select the Edit
the system environment variables option.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 9

2. In the System Properties window, click on the Environment Variables button.

3. In the Environment Variables window, focus on the User variables for admin
pane and verify that a Path is present underneath the Variable column with its
respective Value being the following: C:\Python35\Scripts\;C:\Python35\

The value for the path depends which directory Python has been
installed. If following this guide, then the directory should be
similar to C:\Python3X\.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 10

4. If the path is missing, click on New and configure the following:

a. Variable name: PythonPath
b. Variable value: C:\Python\Scripts\;C:\Python35\
c. Click OK.

5. Click OK to close the Environment Variables window.
6. Click OK once more to close the System Properties window.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 11

2.3 Installing & Configuring a Virtual Environment (Best Practice - Optional)

This subsection will provide guidance on how to implement a virtual environment
utilizing Python so that dependencies required by different projects can be kept in
separated places. For example, one project may require a specific version of a package
while another project may require an older version of the same package.

1. Launch the Windows Command Prompt as an administrator.
2. Using the command prompt, type the command below to list current packages

install for Python using pip (package manager). Remember that pip was selected
to be included in the install procedure when Python was installed.

pip list

3. Enter the command below to install the virtualenv package using pip.

pip install virtualenv

4. Next, install the virtualenvwrapper Python package to add easy-to-use
commands with virtual environments.

pip install virtualenvwrapper-win

If a message appears stating that there is an update available,
the command python -m pip install --upgrade pip can
be used to initiate the upgrade process for the package
manager.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 12

5. Confirm that the package has been installed correctly by issuing the command
below using the command prompt.

pip list

6. Create a Python virtual environment, specifically for the NETLAB+ VE project.

mkvirtualenv netlab35

Notice (netlab35) is printed in front of the prompt. This indicates that the
netlab35 virtual environment is currently being worked on by the user.

Creating a virtual environment specifically for NETLAB+ VE,
while at the same time utilizing a specific Python version will
help keep the global site-packages directory clean and
manageable. Notice that netlab35 was created to set a
reminder that this project is working specifically with Python
3.5.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 13

7. While having the virtual environment activated, set the project directory for the
virtual environment by entering the command below.

setprojectdir C:\Users\admin\Envs\netlab35

8. Enter the workon command to activate the virtual environment and to move into
the project directory.

workon netlab35

9. To stop working on the current project, issue the deactivate command.

deactivate

Notice how (netlab35) disappears from the prompt. This usually
helps indicate that the project is no longer being worked on.

The project directory for the virtual environment can be
configured to what works best in your situation. However, it is
recommended to set the project directory to the user’s home
directory as opposed to the Python install directory.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 14

10. List all the current virtual environments by issuing the command below.

lsvirtualenv

 Verify that the newly created virtual environment exists.

2.4 Installing iPython (Recommended - Optional)

This subsection will provide guidance on how to install iPython along with its
dependencies for a more enhanced and interactive Python shell. This is not necessary
but rather an optional package that can be installed. iPython helps provide colorful font
and helps display information in an easier to read output.

1. Using the command prompt, issue the workon command below to activate the
virtual environment for the NETLAB+ project.

workon netlab35

2. While engaged in the virtual environment, enter the command below to install
iPython:

pip install ipython

3. Verify the installation of iPython and its main dependencies by issuing the

command below.

pip list

If a virtual environment needs to be deleted, the rmvirtualenv
command can be used followed by the name of the virtual
environment.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 15

3 Installing and Configuring the NETLAB+ Client API

This section will provide guidance on how to install the NETLAB+ Python API, how to
activate and configure the API, as well as how to setup the configuration of the client to
interact with a NETLAB+ VE system.

3.1 Installing the NETLAB+ Client API Packages

This subsection will provide guidance on how to install the NETLAB+ client API provided
by NDG. This package will include all necessary files for the NETLAB+ API.

1. Using the command prompt, issue the workon command to activate the virtual

environment for the NETLAB+ project.

workon netlab35

2. Issue a pip command to install the latest Python packages from NDG.

pip install https://ndg.tech/netlab-py-latest

Each time you are required to update the NETLAB+ API packages,
the pip install command can be used along with the same URL
advertised for future updates.

For additional information on managing API users, tokens and source IP
addresses, please see the Manage API Settings section of the NETLAB+
VE Administrator Guide.

http://www.netdevgroup.com/
https://www.netdevgroup.com/support/documentation/netlabve/netlabve_administrator_guide.pdf
https://www.netdevgroup.com/support/documentation/netlabve/netlabve_administrator_guide.pdf

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 16

3. Verify that the netlab package has been successfully installed, along with its
main dependencies such as click and tabulate.

pip freeze

4. Verify the functionality of the new netlab command along with additional
information about the versioning.

netlab version

3.2 Activate the API in NETLAB+ VE

This subsection will provide guidance on how to activate the API feature using the
NETLAB+ VE administrative web interface.

1. Using a compatible web browser, navigate to a desired NETLAB+ VE system and

login as administrator.

Information on compatible web browsers can be found in the
Supported Clients section of the NETLAB+ VE Designated Operating
Environment Guide.

Do not be concerned about the given output for NETLAB+ Server
at this time. A connection hasn’t been initiated with a NETLAB+
system at this point and so it can be ignored.

http://www.netdevgroup.com/
https://www.netdevgroup.com/support/documentation/netlabve/netlabve_designated_operating_environment_guide.pdf
https://www.netdevgroup.com/support/documentation/netlabve/netlabve_designated_operating_environment_guide.pdf

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 17

2. Once logged in, click on the Settings icon located on the homepage.

3. On the System Settings page, click on Manage API Settings.

4. On the Manage API Settings page, click on the Enable API button.

3.3 Creating an API Key in NETLAB+ VE

This subsection will provide guidance on how to create an API key in the NETLAB+ VE
interface as well as how to generate a token used for making API calls.

1. Once the API feature is enabled, on the Manage API Settings, click on the Add
API Key button.

2. In the New API Key pane, enter an IP address into the Source IPs field. A
description can be entered to help distinguish the holder of the API key.

API calls can only be made based from the IP addresses that are
inputted into the Source IPs field, otherwise the connection will
fail.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 18

3. Click the Submit button.
4. Once submitted successfully, click the OK button to continue.

5. Notice on the View API Key page, a token is presented. Copy this token as it will
be required when continuing to the next subsection.

3.4 Creating config.json for the Client API Using Windows

This subsection will provide guidance on how to create and configure a config.json file
to be used for when connecting to a NETLAB+ VE system using API calls. The subsections
below describe two ways of accomplishing the same task. The first procedure (Option 1)
involves using an automated CLI approach and the second procedure (Option 2) involves
a manual UI approach.

3.4.1 Automated CLI Procedure (Option 1)

1. Using the command prompt with administrative rights, enter the command
below to navigate to the current local user account directory.

cd C:\Users\<current_user>

The directory C:\Users\<current_user> should be a user with
administrative privileges. The <current_user> field should be
replaced with your local system username. In this example, the
user is named admin.

This subsection describes one of two options for creating and
configuring a config.json file. You may choose the automated
procedure by following the steps below or follow the manual procedure
described in Section 3.4.2.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 19

2. Enter the netlab command below to view available options.

netlab --help

3. The command for adding a NETLAB+ system can be inputted in one line. Entering
the command below will add the specified system to a config.json file using the
API token generated in the previous subsection. It is recommended to first start
by configuring the default NETLAB+ system.

netlab config add --host X.X.X.X --user administrator --token
<api_token_value> --timeout 10

…Or, if interested in specifying a name for the NETLAB+ API configuration, the
command below would be used.

netlab config add --system DEMO --host X.X.X.X --user administrator --
token <api_token_value> --timeout 10

Here is a breakdown for each option used.

add: This adds a new system with all required settings.
--system: Specify a desired name for a particular NETLAB+
system.
--host: Specify a NETLAB+ system either by an IPv4 address or
FQDN.
--user: Specify the user account.
--token: Specify the token value.
--timeout: Specify the amount of time in seconds of no
response from the socket before it will close.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 20

4. Another option for adding a NETLAB+ system to the local config.json file can be
done interactively as shown in the steps below. To begin, enter the command
below to add a default NETLAB+ system.

netlab config add

a. Continue the process by specifying a NETLAB+ system either by an IPv4
address of FQDN followed by pressing the Enter key.

b. Next, enter the username of the user who will have API access.

c. Enter the token value.

d. Enter a value in seconds for the timeout value (default is 10).

If attempting to add additional NETLAB+ systems that will not
be acting as the default, the following command can be used
where DEMO can be substituted for another descriptive name:
netlab config add --system DEMO

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 21

5. Verify the configurations were entered properly.

netlab config

6. Test the configuration by initiating the command below.

netlab config test

If the connection test fails and the configuration appears correct,
it is advised to verify that your Source IP address is correctly
entered in the API settings in the NETLAB+ administrative
dashboard, reference Section 3.3.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 22

3.4.1.1 Useful netlab CLI Commands

1. The command below can be used to verify current installed versions.

netlab version

2. To remove a NETLAB+ API configuration, enter the command below with the
system name specified.

netlab config remove --system default

A confirmation will appear, enter y followed by pressing the
Enter key to confirm.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 23

3.4.2 Manual UI Procedure (Option 2)

1. Using the command prompt with administrative rights, enter the command
below to navigate to the current local user account directory.

cd C:\Users\<current_user>

2. Create a new folder named .netlab by entering the command below.

mkdir .netlab

There is period in front of the word “netlab”.

The directory C:\Users\<current_user> should be a user with
administrative privileges. The <current_user> field should be
replaced with your local system user. In this example, the user is
named admin.

This subsection describes one of two options for creating and
configuring a config.json file. You may choose the manual procedure by
following the steps below or follow the automated procedure described
in Section 3.4.1.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 24

3. Launch Notepad.

4. Using Notepad, type the following JSON configuration:

{
 "default": {
 "host": "ip_address",
 "user": "user_name",
 "token": "token_value",
 "ssl": true
 }
}

a. Host: Type the IPv4 address or FQDN of the NETLAB+ system.
b. User: Type the username found in the NETLAB+ database; most cases

will be “administrator”.
c. Token: Enter the token generated from Section 3.3.
d. SSL: Leave enabled.

5. When ready to save, select File > Save As.
6. In the Save As window, navigate to the .netlab folder found in the

C:\Users\current_user\ directory. Set this as the save path.

It is recommended to first validate the JSON configuration by
going to a JSON validator website such as jsonlint.com. Simply
copy/paste the entire configuration into the validator and run
the script. If it comes back with “Valid JSON”, then proceed by
copying it from the validator script and pasting it into Notepad.

A different text editor can be used.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 25

7. Type config.json in the File name field.
8. Select All Files as the Save as type.
9. Select ANSI as the encoding type and click Save.

10. Confirm that the file successfully saved with JSON appearing under the Type
column.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 26

4 Issuing API Calls

This section will help provide guidance on how to initiate the API call with a NETLAB+ VE
system as well as how to run Python scripts against the system to automate tedious
tasks.

4.1 Using the API to Connect to a NETLAB+ System

This subsection will provide guidance on how to initiate a connection with a NETLAB+
system utilizing Python.

1. Launch the command prompt as administrator.
2. Using the command prompt, enter the command below to initiate the netlab35

virtual environment.

workon netlab35

3. Once the virtual environment is activated, issue the command below to launch
iPython (if installed).

ipython

 To launch regular Python, issue the command below.

python

The netlab35 can be replaced with a user specific version
dependent on the versioning of the project that is being worked
on.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 27

4. Get started by importing the Client class from the netlab.client module. This will
always be the first step when initiating a connection to the API.

from netlab.client import Client

5. Instantiate the Client and assign it to a variable named tapi. A different variable
name can be used here such as client = Client() or api = Client(). This will load the
default configuration and attempt to connect to the remote API.

tapi = Client()

6. Issue the command below to verify which client information was pulled from the
config.json configuration file. Since empty parentheses was used for this
example, it should pull the default configuration.

tapi

4.2 Informative NETLAB+ API Methods

This subsection will provide guidance on helpful API methods that can request useful
information from a NETLAB+ system, its datacenter and hosts. It is assumed that an
active Python API session is already established from the previous subsection.

When Client() is specified with empty parentheses, this means
that it will automatically pull the “default” set configuration
from the config.json file. If, for instance, an additional
configuration was set in the same file with the name of dev1,
then to load dev1 configs, the client would be loaded with tapi
= Client(‘dev1’). The system name is a string and must be
enclosed with single or double quotes.

More information on the netlab.client module can be found in
the NETLAB+ VE Python SDK documentation. To access, visit the
following link: https://ndg.tech/netlab-py-docs

http://www.netdevgroup.com/
https://ndg.tech/netlab-py-docs

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 28

4.2.1 Infrastructure API Methods

1. Using an active Python API session, the method below will retrieve a list of all
associated datacenters with a NETLAB+ system along with datacenter
information.

tapi.vm_datacenter_list()

2. To retrieve datacenter information for a specific datacenter, pass the vdc_id
from the previous step into the method below.

tapi.vm_datacenter_get(vdc_id=1)

The vdc_id was valid and so passing it to the vm_datacenter_get
method resulted in a successful API call. If the vdc_id does not
exist, an exception will be thrown. For reference regarding
exceptions, visit the following for more information:
https://netlab-py.s3.amazonaws.com/docs/exceptions.html

The vdc_id is the identifier assigned to a datacenter that has
been established with a particular NETLAB+ system. This value
can be used with other methods utilizing “get”.

http://www.netdevgroup.com/
https://netlab-py.s3.amazonaws.com/docs/exceptions.html

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 29

3. Another way to retrieve the vdc_id property is by calling the vm_datacenter_find
method below.

tapi.vm_datacenter_find(vdc_name='NETLAB')

4. More information can be pulled about a NETLAB+ system by calling the method
below.

tapi.system_status_get()

The name of the datacenter must be known to retrieve the
vdc_id using this method.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 30

5. To list all hosts associated with a NETLAB+ system and their respective host
information, the method below can be used.

tapi.vm_host_list()

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 31

6. To list information pertaining to only a specified host, pass the vh_id to the
method below.

tapi.vm_host_get(vh_id=1)

The vh_id was identified in the previous method where a list
was generated for all hosts.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 32

4.2.2 NETLAB+ API Methods

Several API methods that can automate tedious administrative tasks on a NETLAB+
system are described in the subsections below.

4.2.2.1 VM Inventory

1. Using an active Python API session, the method below will retrieve a list of all
VMs in the Virtual Machine Inventory in a NETLAB+ system along with their
respective information.

tapi.vm_inventory_list()

Take notice of the vm_id property and its respective value. The
value is unique when trying to identify VMs in the inventory and
can be used with other methods utilizing “get”.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 33

2. To retrieve VM information for a particular virtual machine, pass the vm_id
parameter along with a specified value into the method below.

tapi.vm_inventory_get(vm_id=163)

The vm_id was a known virtual machine and so passing it to the
vm_inventory_get function resulted in a successful API call.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 34

4.2.2.2 Pod Inventory

1. List all currently installed pods on a NETLAB+ system by calling the method
below.

tapi.pod_list()

2. List all the different pod types by calling the method below.

tapi.pod_types_list()

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 35

3. To retrieve a list of all VMs that have a snapshot, write the script below followed
by pressing the Enter key after each line. On the last line, press the Enter key
twice to run the script.

for vm in tapi.vm_inventory_list():
 if not vm['vm_snapshot']:
 print(vm['vm_name'])

Notice a list of VMs that have a snapshot in place is outputted
onto the screen.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 36

4.2.2.3 User & Class Inventory

1. List all classes configured on a NETLAB+ system by calling the method below.

tapi.class_list()

The property cls_name holds the name of the class.

Issuing the class_* and user_* methods, as described in this subsection,
can result in increased overhead on the server side. When using these
methods to query data, there are certain extended properties present
that can result in higher compute to return the data to the user. It is
recommended to use these methods cautiously.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 37

2. Grab information about a specific class by passing the value of the cls_id
property in the method below.

tapi.class_get(cls_id=1)

3. Retrieve a roster list from a specific class by passing the cls_id value in the
method below.

tapi.class_roster_list(cls_id=1)

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 38

4. To retrieve a list of all accounts on a NETLAB+ system, call the method below.

tapi.user_account_list()

5. Pass the value of the acc_id property to the method below to retrieve
information on a specific user.

tapi.user_account_get(acc_id=110803)

6. The method below may be used to reset a user’s password.

tapi.user_account_password_set(acc_id=110803, new_password='netlab123')

Passing the acc_id and new_password parameters will help
accomplish a password reset.

Each user is provided a unique acc_id value.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 39

7. List all communities on a given NETLAB+ system by calling the method below.

tapi.user_community_list()

8. To retrieve information on a specific community, the method below can be
called with the com_id parameter specified.

tapi.user_community_get(com_id=1)

4.3 NETLAB+ API Methods using Sample Scripts

This subsection will provide guidance on helpful API methods using sample scripts that
can automate tedious administrative tasks on a NETLAB+ system.

1. Launch a command prompt as administrator and enter the command below to
navigate to the virtual environment.

workon netlab35

The netlab35 can be replaced with a user specified project name
dependent on the versioning of the project that is being worked
on.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 40

4.3.1 Downloading the Sample Scripts

1. Go to the URL provided below to download the sample scripts from NDG.

https://ndg.tech/netlab-py-samples

2. Once downloaded, extract the netlab-samples-X.X.X archive into the project

directory that was configured in Section 2.3 of this guide.

3. For easier accessibility, move all file contents from the samples subdirectory into
the root directory of the specified project directory.

For this example, the project directory was configured to
C:\Users\admin\Envs\netlab35.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 41

4.3.2 Creating Empty Master Pods

This subsection will provide guidance on how to automate the task of creating empty
master pods that can later be filled with their necessary VMs.

4.3.2.1 Script Prep

1. Navigate to where the sample.py file is saved and edit the file using a text editor.
2. Change the client system configuration to the appropriate value. In this example,

the default config is used.

3. Scroll down to the pod_add method and uncomment any lines that you wish to
use, depending on the type(s) of master pods.

The first two lines have been uncommented and so two master
pods will be created. The first master pod will be called
RHSA7_GM and will have a pod ID of 1000 as shown in the
pod_id object. The second pod will be called NDG_EH_GM and
will have a pod ID of 2000. Both pod_id and pod_name can be
customizable.

This value would reflect the specified --system value that was
used when configuring the config.json file from Section 3.4.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 42

4. Scroll all the way to the bottom and add a line that includes pod_add(). This will
tell the script to initiate the uncommented lines from the pod_add method.

5. Once finished editing the sample.py file, save the changes.

4.3.2.2 Initiate

1. Using the command prompt with administrative access, make sure to be
activated in a virtual environment, reference Section 4.3. Call the sample.py file
to launch with the Python program by entering the command below.

ipython sample.py

 …Or, regular python can be used to launch the sample.py script as shown below.

python sample.py

2. If the prompt comes back with no errors, verify the work was done in the
NETLAB+ UI.

Wait for the job to complete. Once the prompt comes back, the
job is then finished running.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 43

4.3.3 Bring Pods Online

This subsection will provide guidance on how to automate the task of putting pods
online.

4.3.3.1 Script Prep

1. Navigate to where the sample.py file is saved and edit the file using a text editor.
2. Change the client system configuration to the appropriate value. In this example,

the default config is used.

3. Scroll down to the pod_online method and take notice of the instructions.

This value would reflect the specified --system value that was
used when configuring the config.json file from Section 3.4.

It is recommended to comment back the uncommented lines or
any additional lines added to the sample.py file before reusing
the script again for a different task. It may be better to save the
script as a new file when making changes so that there is always
an original available to work from.

Notice two master pods have been created with the pod names
specified and their respective pod IDs.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 44

4. Scroll all the way to the bottom and add a line that includes pod_online() and
configure it to specify a single pod ID like shown below. This will make a call to
the pod_online method with the specified values.

…Or, to specify a range, edit the script as shown below.

5. Once finished editing the sample.py file, save it.

4.3.3.2 Initiate

1. Using the command prompt with administrative access, make sure to be
activated in a virtual environment, reference Section 4.3. Call the sample.py file
to launch with the Python program by entering the command below.

ipython sample.py

Wait for the job to complete. Once the prompt comes back, the
job is then finished running.

The pod_online method can be called upon using two different
functions, either by a single pod ID or a range of pod IDs.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 45

2. Verify the work was done in the NETLAB+ UI.

4.3.4 Bring Pods Offline

This subsection will provide guidance on how to automate the task of putting pods
offline.

4.3.4.1 Script Prep

1. Navigate to where the sample.py file is saved and edit the file using a text editor.
2. Change the client system configuration to the appropriate value. In this example,

the default config is used.

This value would reflect the specified --system value that was
used when configuring the config.json file from Section 4.3.

It is recommended to comment back the uncommented lines or
any additional lines added to the sample.py file before reusing
the script again for a different task. It may be better to save the
script as a new file when making changes so that there is always
an original available to work from.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 46

3. Scroll down to the pod_offline method and take notice of the instructions.

4. Scroll all the way to the bottom and add a line that includes pod_offline() and
configure it to specify a single pod ID like shown below. This function will make a
call to the pod_offline method with the specified values.

…Or, to specify a range, edit the script as shown below.

5. Once finished editing the sample.py file, save it.

The pod_offline method can be called upon using two different
functions, either by a single pod ID or a range of pod IDs.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 47

4.3.4.2 Initiate

1. Using the command prompt with administrative access, make sure to be
activated in a virtual environment, reference Section 4.3. Call the sample.py file
to launch with the Python program by entering the command below.

ipython sample.py

2. Verify the work was done in the NETLAB+ UI.

It is recommended to comment back the uncommented lines or
any additional lines added to the sample.py file before reusing
the script again for a different task. It may be better to save the
script as a new file when making changes so that there is
always an original available to work from.

Wait for the job to complete. Once the prompt comes back, the
job is then finished running.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 48

4.3.5 Remove Pods

This subsection will provide guidance on how to automate the task of removing pods.

4.3.5.1 Script Prep

1. Navigate to where the sample.py file is saved and edit the file using a text editor.
2. Change the client system configuration to the appropriate value. In this example,

the default config is used.

3. Scroll down to the pod_remove method and take notice of the instructions.

The pod_remove method can be called upon using three
different functions, either by a single pod ID or a range of pod
IDs as well as the type of deletion.

This value would reflect the specified --system value that was
used when configuring the config.json file from Section 3.4.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 49

4. Scroll all the way to the bottom and add a line that includes pod_remove() and
configure it to specify which pods require removal. In the example below, a
single pod ID and DISK as the type of deletion is being scripted. This function will
make a call to the pod_remove method with the specified values.

…Or, to specify a range, edit the script as shown below.

5. Once finished editing the sample.py file, save it.

Here is a breakdown of the various remove_vms properties
that can be passed:

remove_vms=“NONE”: Do not delete any VMs (they will
remain in the NETLAB+ inventory)
remove_vms=“LOCAL”: Remove VMs from NETLAB+
inventory only (VMs remains in datacenter)
remove_vms=“DATACENTER”: Remove VMs from NETLAB+
inventory and datacenter (VM files not deleted from disk)
remove_vms=“DISK”: Remove VMs from NETLAB+ inventory,
datacenter, AND delete unshared VM files from disk

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 50

4.3.5.2 Initiate

1. Using the command prompt with administrative access, make sure to be
activated in a virtual environment, reference Section 4.3. Call the sample.py file
to launch with the Python program by entering the command below.

ipython sample.py

2. Verify the work was done in the NETLAB+ UI.

It is recommended to comment back the uncommented lines or
any additional lines added to the sample.py file before reusing
the script again for a different task. It may be better to save the
script as a new file when making changes so that there is always
an original available to work from.

Wait for the job to complete. Once the prompt comes back, the
job is then finished running.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 51

4.3.6 Cloning Pods

This subsection will provide guidance on how to automate the task of cloning pods.

4.3.6.1 Script Prep

1. Navigate to where the sample.py file is saved and edit the file using a text editor.
2. Change the client system configuration to the appropriate value. In this example,

the default config is used.

3. Scroll down to the pod_clone method and take notice of the instructions.

The pod_clone method can be configured to use many variables.

This value would reflect the specified --system value that was
used when configuring the config.json file from Section 3.4.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 52

4. Scroll all the way towards the bottom of the script and take notice of the
lplus_base method. This will be used an example to copy from. Create a similar
method for any desired pod type that you wish to clone. For this example,
RHSA7 pod type will be used.

5. Scroll all the way to the bottom and add a line that calls out the new method for
the pod cloning. In this example, the RHSA7 pod type is defined for pod cloning
and so the rhsa7() method is added.

6. Once finished editing the sample.py file, save it.

Here is a breakdown of the various properties used:

pod_master: Identify the pod ID of the master pod to be
cloned from.
pod_rng: Configure the range for the number of cloned pods.
pod_prefix: Configure the starting name convention for each
cloned pod.
clone_datastore: Identify the name of the datastore to create
the cloned pod VMs to.
clone_vh_name: Identify the host that the cloned pods will be
running on.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 53

4.3.6.2 Initiate

1. Using the command prompt with administrative access, make sure to be
activated in a virtual environment, reference Section 4.3. Call the sample.py file
to launch with the Python program by entering the command below.

ipython sample.py

2. Verify the work was done in the NETLAB+ UI.

It is recommended to comment back the uncommented lines or
any additional lines added to the sample.py file before reusing
the script again for a different task. It may be better to save the
script as a new file when making changes so that there is always
an original available to work from.

The script automatically puts the cloned pods in an Online state.

Wait for the job to complete. Once the prompt comes back, the
job is then finished running.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 54

4.3.7 Adding Users

This subsection will provide guidance on how to automate the task of adding users.

4.3.7.1 Script Prep

1. Navigate to where the sample.py file is saved and edit the file using a text editor.
2. Change the client system configuration to the appropriate value. In this example,

the default config is used.

3. Scroll down to the user_add method and take notice of the instructions.

This value would reflect the specified --system value that was
used when configuring the config.json file from Section 3.4.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 55

4. Scroll all the way to the bottom and add a line that includes user_add() and
configure it to add a new user account. An example is shown below for adding a
student named John Doe to be added to the default community under the NDG
Training (cls_id=6809) class with a temporary password of demo123. An
additional student is added in the same task named Sally Doe.

5. Once finished editing the sample.py file, save it.

4.3.7.2 Initiate

1. Using the command prompt with administrative access, make sure to be
activated in a virtual environment, reference Section 4.3. Call the sample.py file
to launch with the Python program by entering the command below.

ipython sample.py

Wait for the job to complete. Once the prompt comes back, the
job is then finished running.

Here is a breakdown of the various user_add properties that
can be passed:

com_id: The community ID in which to add the user to,
typically 1 is the default community.
acc_user_id: Assign a username to an account.
acc_password: Assign a password for the account.
acc_full_name: Assign a full name for the account.
acc_type: Assign (S) for student or (I) for instructor account
type.
cls_id: Assign account to a specified class using an ID value.
This value can be obtained from Section 4.2.2.3.
tz_id: Assign a time zone ID for an account.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 56

2. Verify the work was done in the NETLAB+ UI.

It is recommended to comment back the uncommented lines or
any additional lines added to the sample.py file before reusing
the script again for a different task. It may be better to save the
script as a new file when making changes so that there is always
an original available to work from.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 57

4.3.8 Removing Users

This subsection will provide guidance on how to automate the task of removing users.

4.3.8.1 Script Prep

1. Navigate to where the sample.py file is saved and edit the file using a text editor.
2. Change the client system configuration to the appropriate value. In this example,

the default config is used.

3. Scroll down to the user_del method and take notice of the instructions.

4. Scroll all the way to the bottom and add a line that includes user_del() and
configure it to remove a user account. In this example, the user jdoe is removed
from the system.

5. Once finished editing the sample.py file, save it.

This value would reflect the specified --system value that was
used when configuring the config.json file from Section 3.4.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 58

4.3.8.2 Initiate

1. Using the command prompt with administrative access, make sure to be
activated in a virtual environment, reference Section 4.3. Call the sample.py file
to launch with the Python program by entering the command below.

ipython sample.py

2. Verify the work was done in the NETLAB+ UI.

It is recommended to comment back the uncommented lines or
any additional lines added to the sample.py file before reusing
the script again for a different task. It may be better to save the
script as a new file when making changes so that there is always
an original available to work from.

Wait for the job to complete. Once the prompt comes back, the
job is then finished running.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 59

4.3.9 Creating Classes

This subsection will provide guidance on how to automate the task of creating classes.

4.3.9.1 Script Prep

1. Navigate to where the sample.py file is saved and edit the file using a text editor.
2. Change the client system configuration to the appropriate value. In this example,

the default config is used.

3. Scroll down to the class_add method and take notice of the instructions.

4. Scroll all the way to the bottom and add a line that includes class_add() and
configure it to add a new class. This example creates two classes: Class 1 and
Class 2, and adds them to the default community (com_id=1).

5. Once finished editing the sample.py file, save it.

Here is a breakdown of the various class_add properties that
can be passed:

cls_name: The desired name for the new class.
com_id: The community ID in which to add the user to,
typically 1 is the default community.

This value would reflect the specified --system value that was
used when configuring the config.json file from Section 3.4.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 60

4.3.9.2 Initiate

1. Using the command prompt with administrative access, make sure to be
activated in a virtual environment, reference Section 4.3. Call the sample.py file
to launch with the Python program by entering the command below.

ipython sample.py

2. Verify the work was done in the NETLAB+ UI.

It is recommended to comment back the uncommented lines or
any additional lines added to the sample.py file before reusing
the script again for a different task. It may be better to save the
script as a new file when making changes so that there is always
an original available to work from.

The new class IDs are shown in the output.

Wait for the job to complete. Once the prompt comes back, the
job is then finished running.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 61

4.3.10 Removing Classes

This subsection will provide guidance on how to automate the task of removing classes.

4.3.10.1 Script Prep

1. Navigate to where the sample.py file is saved and edit the file using a text editor.
2. Change the client system configuration to the appropriate value. In this example,

the default config is used.

3. Scroll down to the class_remove method and take notice of the instructions.

4. Scroll all the way to the bottom and add a line that includes class_remove()
and configure it to remove a class. This example removes Class 1 from the
system and retains the user accounts attached to the class.

5. Once finished editing the sample.py file, save it.

Here is a breakdown of the various class_remove properties
that can be passed:

cls_id: Assign account to a specified class using an ID value.
This value can be obtained from Section 4.2.2.3.
delete_students: Set either True (delete attached student
accounts) or False (do no delete attached student accounts)

This value would reflect the specified --system value that was
used when configuring the config.json file from Section 3.4.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 62

4.3.10.2 Initiate

1. Using the command prompt with administrative access, make sure to be
activated in a virtual environment, reference Section 4.3. Call the sample.py file
to launch with the Python program by entering the command below.

ipython sample.py

2. Verify the work was done in the NETLAB+ UI.

It is recommended to comment back the uncommented lines or
any additional lines added to the sample.py file before reusing
the script again for a different task. It may be better to save the
script as a new file when making changes so that there is always
an original available to work from.

Wait for the job to complete. Once the prompt comes back, the
job is then finished running.

http://www.netdevgroup.com/

NETLAB+ Virtual Edition Application Program Interface Guide for Python

6/15/2017 Copyright © 2017 Network Development Group, Inc. www.netdevgroup.com Page 63

Appendix A

Appendix A.1 Quick Start Guide for Cloning Pods

This section will help outline the processes required, at minimum, to get started on
cloning pods as the end goal of a NETLAB+ administrator. To get started, follow the
steps provided below to accomplish the cloning task.

1. Install and configure Python, go through Section 2.1.
2. Install the NETLAB+ client API packages, see Section 3.1.
3. Activate the API feature in NETLAB+, see Section 3.2.
4. Create an API key, see Section 3.3.
5. Create and configure a config.json file for the specified NETLAB+, see Section 3.4.
6. Download sample scripts, see Section 4.3.1.
7. Modify the sample scripts to clone specific pods, see Section 4.3.6.

http://www.netdevgroup.com/

	1 Prerequisites
	1.1 Pre-installation Configuration

	2 Installing and Preparing Python on Windows
	2.1 Installing Python
	2.2 Verifying Python System Path Variable (Best Practice – Optional)
	2.3 Installing & Configuring a Virtual Environment (Best Practice - Optional)
	2.4 Installing iPython (Recommended - Optional)

	3 Installing and Configuring the NETLAB+ Client API
	3.1 Installing the NETLAB+ Client API Packages
	3.2 Activate the API in NETLAB+ VE
	3.3 Creating an API Key in NETLAB+ VE
	3.4 Creating config.json for the Client API Using Windows
	3.4.1 Automated CLI Procedure (Option 1)
	3.4.1.1 Useful netlab CLI Commands

	3.4.2 Manual UI Procedure (Option 2)

	4 Issuing API Calls
	4.1 Using the API to Connect to a NETLAB+ System
	4.2 Informative NETLAB+ API Methods
	4.2.1 Infrastructure API Methods
	4.2.2 NETLAB+ API Methods
	4.2.2.1 VM Inventory
	4.2.2.2 Pod Inventory
	4.2.2.3 User & Class Inventory

	4.3 NETLAB+ API Methods using Sample Scripts
	4.3.1 Downloading the Sample Scripts
	4.3.2 Creating Empty Master Pods
	4.3.2.1 Script Prep
	4.3.2.2 Initiate

	4.3.3 Bring Pods Online
	4.3.3.1 Script Prep
	4.3.3.2 Initiate

	4.3.4 Bring Pods Offline
	4.3.4.1 Script Prep
	4.3.4.2 Initiate

	4.3.5 Remove Pods
	4.3.5.1 Script Prep
	4.3.5.2 Initiate

	4.3.6 Cloning Pods
	4.3.6.1 Script Prep
	4.3.6.2 Initiate

	4.3.7 Adding Users
	4.3.7.1 Script Prep
	4.3.7.2 Initiate

	4.3.8 Removing Users
	4.3.8.1 Script Prep
	4.3.8.2 Initiate

	4.3.9 Creating Classes
	4.3.9.1 Script Prep
	4.3.9.2 Initiate

	4.3.10 Removing Classes
	4.3.10.1 Script Prep
	4.3.10.2 Initiate

